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Hyperspectral imagery provides the ability to detect targets that are smaller
than the size of a pixel. They provide this ability by measuring the reflection and
absorption of light at different wavelengths creating a spectral signature for each pixel
in the image. This spectral signature contains information about the different
materials within the pixel; therefore, the challenge in subpixel target detection lies in
separating the target’s spectral signature from competing background signatures.
Most research has approached this problem in a purely statistical manner. Our
approach fuses statistical signal processing techniques with the physics of reflectance
spectroscopy and radiative transfer theory. Using this approach, we provide novel
algorithms for all aspects of subpixel detection from parameter estimation to

threshold determination.



Characterization of the target and background spectral signatures is a key part
of subpixel detection. We develop an algorithm to generate target signatures based on
radiative transfer theory using only the image and a reference signature without the
need for calibration, weather information, or source-target-receiver geometries. For
background signatures, our work identifies that even slight estimation errors in the
number of background signatures can severely degrade detection performance. To
this end, we present a new method to estimate the number of background signatures
specifically for subpixel target detection.

At the core of the dissertation is the development of two hybrid detectors
which fuse spectroscopy with statistical hypothesis testing. Our results show that the
hybrid detectors provide improved performance in three different ways: insensitivity
to the number of background signatures, improved detection performance, and
consistent performance across multiple images leading to improved receiver
operating characteristic curves.

Lastly, we present a novel adaptive threshold estimate via extreme value
theory. The method can be used on any detector type — not just those that are constant
false alarm rate (CFAR) detectors. Even on CFAR detectors our proposed method can
estimate thresholds that are better than theoretical predictions due to the inherent
mismatch between the CFAR model assumptions and real data. Additionally, our
method works in the presence of target detections while still estimating an accurate

threshold for a desired false alarm rate.
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Preface

The data used in this dissertation comes from the RDECOM CERDEC Night
Vision & Electronic Sensors Directorate (NVESD) of the U.S. Army. The data was
collected at significant expense by NVESD and therefore they reserved the right to
approve all publications containing their data. Because the NVESD data contains
some of the best examples of subpixel target images available, the NVESD imagery is
used throughout this dissertation. In order to use their imagery, we had to receive
approval from NVESD to publish this dissertation — a ten week process. To help
minimize the approval process which dictates that any publication changes must be
approved by NVESD, we rewrote the dissertation such that it contains a data chapter.
NVESD only requires that this data chapter be approved per e-mail of Mr. David
Hicks (NVESD). Fortunately, the addition of this data chapter has provided the added
benefit of providing a good explanation of hyperspectral imagery and its

idiosyncrasies to motivate the rest of the dissertation.
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Chapter 1: Introduction

1.1. A Brief History of Imaging Spectroscopy

The study of a material’s spectral properties grew out of the field of
reflectance spectroscopy introduced in the 1920s. Reflectance spectroscopy identified
the component chemicals in a sample by studying the reflective properties of the
material [40]. By the 1930s and 1940s, spectrophotometers were introduced and the
field of spectroscopy grew more popular. This work led to radiative transfer theory
that was able to measure the reflective properties of a sample and identify the
underlying physical mechanisms in such measurements. Radiative transfer theory
ultimately led to the development of spectral imagers in the early 1970s [54].

Spectral imagery is, however, not a new concept. Color imagery is the most
basic and widely recognized spectral imagery. In spectral imagery, each spatial point
or pixel is represented by multiple measurements of different wavelengths in the
electromagnetic spectrum. In the case of color imagery, each pixel contains
information for the red, green, and blue wavelengths in the visible portion of the
electromagnetic spectrum. This idea of measuring the energy in different wavelengths
of the spectrum along with radiative transfer theory led to the development of
multispectral imagery.

In July 1972, the first space-based multispectral imager was launched under
the LANDSAT program [63]. The imager contained four bands across the visible
(VIS) to near-infrared (NIR) wavelengths. The LANDSAT program was so
successful that the program continues today utilizing new multispectral sensors that

are capable of measuring seven bands of the electromagnetic spectrum. The success



of these multispectral sensors led to the development of the hyperspectral sensor in
the mid-1980s and its corresponding field of imaging spectroscopy.

Hyperspectral imagery (HSI) differs from its earlier counterpart, multispectral
imagery, in two key ways. The first difference is the number of spectral bands
collected by hyperspectral sensors. Multispectral sensors typically collect less than
ten bands of spectral information per pixel. Hyperspectral imagery contains hundreds
of bands of spectral information per pixel. The second difference is that multispectral
imagery having so few bands, selects wavelengths that are considered the most
informative for a particular application; thus, the bands are non-contiguous.
Hyperspectral sensors sample the spectrum creating hundreds of contiguous spectral
bands. The result is a spectral signature at every pixel location that can be used to
identify the materials imaged within the pixel. The spectral signature can also be
decomposed to identify different materials present in the same pixel.

For this dissertation, we focus on hyperspectral sensors that measure energy in
the reflectance wavelengths of the electromagnetic spectrum. Reflectance is defined
as “the ratio of reflected radiance to incident irradiance” [93]. Simply, reflectance is a
measure of the energy reflected from the surface of an object. Therefore,
hyperspectral sensors in the reflective wavelengths are passive instruments measuring
the light reflected in a scene — typically sunlight. The reflectance wavelengths in the
electromagnetic spectrum are composed of three spectral bands: the Visible (VIS)
from 400 nm to 700 nm, the Near Infrared (NIR) from 700 nm to 1100 nm, and the
Short Wave Infrared (SWIR) from 1100 nm to 2500 nm. Figure 1 displays these three

spectral bands and provides three typical materials in a hyperspectral image: road,



soil, and vegetation. This shows figure demonstrates the spectral resolution available

in hyperspectral imagery.
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Figure 1: Hyperspectral Signatures of Common Materials

Figure 1 also displays a few of the effects caused by light passing through the
atmosphere. Therefore, hyperspectral sensors do not directly measure the reflectance
properties of a material. Instead, hyperspectral sensors measure the radiance at each
wavelength. Radiance is defined as “radiant flux per unit area per unit solid angle per
unit wavelength” [93]. The radiance values not only contain the reflectance properties
of the object being imaged, but also contain all of the environmental effects that arise
between the imager and the object being imaged. Thus, the hyperspectral sensor not
only records the materials in the pixel, but also the spectral signatures due to sunlight
and the atmosphere such as the absorption bands shown in Figure 1.

Despite the effects of the atmosphere masking the true reflective signatures of

the materials being imaged, a number of applications have been developed to utilize



hyperspectral imagery such as mineral identification [76][77], land cover
classification [34], vegetation studies [66], and atmospheric studies [72]. This
dissertation focuses on target detection applications — specifically, subpixel detection
where the target is literally smaller than the area imaged by a single pixel. This field
of study has broad reaching applications from obvious military applications to search
and rescue operations [106] to forensic investigations for the space shuttle Columbia
incident [78]. The last application is perhaps the most well known use of
hyperspectral sensors to perform broad-area searches and find parts of the Columbia
that were only one inch long from an altitude of 2000 ft.

1.2. Subpixel Detection

Detection can be considered a special two class case of pattern recognition;
however, it differs from classification in a number of ways [69]. In classification, the
objective is to minimize the total error across all classes of data [24]. In detection, we
only want to identify our desired target class amongst a larger background class. This
reasoning fundamentally assumes that the target class is rare and that most pixels are
from the background class. Thus, if we minimized the total error as in classification,
we could simply identify every pixel as background. Of course, we are interested in
maximizing the detection of targets while minimizing Type I errors — identifying
background pixels as targets (false alarms) [18]. This maximization of target
detection and minimization of false alarms is the fundamental difference between
detection and standard pattern recognition.

Spectral subpixel detection in hyperspectral image (HSI) data aims to identify
a target smaller than the size of a pixel using only spectral information [71]. Thus, the

challenge in detecting subpixel targets lies in separating the target’s spectral signature



from other competing signatures within the pixel. To accomplish this “unmixing” of
signatures, the field of reflectance spectroscopy provides a model of how these
multiple spectra interact with one another [40]. The most common model assumes
that the spectra are represented by unique spatially non-overlapping materials. This
model is called the linear mixing model and it is the cornerstone for most subpixel
detection algorithms.

The linear mixing model assumes that a pixel is made up of endmembers,
each with its own abundance. Endmembers are the spectra representing the unique
materials in a given image. For instance, in an image that contains soil, vegetation,
and road, the endmembers would be the corresponding unique spectral signatures for
each of these materials as shown in Figure 1. Abundances are the percentage of each

material within a given pixel. Mathematically, the linear mixing model is written as
M
x=Ea, 4,20, ) a, =1 (1)
i=1

where x is an L <] vector that represents the spectral signature of the current pixel, M
is the number of endmembers within the image, E is an LxM matrix where each
column represents the i” endmember, and a is an Mx] vector where the i entry
represents the abundance value a;. Note that the linear mixing model includes two
constraints on the abundance values: non-negativity and sum-to-one. These
constraints place physical limitations on the abundances making sure they represent
the percentage of each material present in the pixel.

1.3. Thesis

The interesting part of subpixel detection is not the linear mixing model itself,

but the parameters of the linear mixing model. These parameters have been



historically treated only in a statistical sense. The parameters are typically found
using maximum likelihood estimates (MLE). This is, of course, a natural way to
proceed in solving detection problems since such estimates are guaranteed to be
consistent and asymptotically efficient [18]. However, Prof. David Landgrebe, a
pioneer in remote sensing, argues in his paper that the improvement in hyperspectral
image analysis will not be made by using different statistical algorithms, but by
properly modeling the physics of the problem [64]. Instead of using statistical
estimates of the parameters, we could use physics-based estimates of the parameters
within statistical hypothesis tests to improve subpixel detection.

Some research has already been devoted to this type of physics-based
detection approach. The most notable is from Thai and Healey [109]. They present an
algorithm that creates a subpixel detector that is invariant to atmospheric effects.
They project the desired target reflectance signature to radiance signatures for
thousands of different atmospheric profiles using the computational physics model
MODTRAN (MODerate TRANsmission) [3]. From these thousands of possible target
radiance signatures, they use singular value decomposition (SVD) to extract a set of
target singular vectors that minimize atmospheric and illumination effects; however,
they only use physics to derive the target signature. The background signatures and
detector are still estimated using purely statistical arguments. This has the negative
effect of generating abundances that cannot meet the linear mixing model constraints.

Schott [94] and Lee [65] take a slightly different approach to physics-based
subpixel detection. From the thousands of different target radiance signatures

generated with MODTRAN, Lee uses a simplex method to identify the target



signatures that span the space of all possible target signatures generated. These target
“endmembers” are concatenated to the image data and a simplex method such as N-
FINDR is used to extract the endmembers [115][116] — some of which they argue
will be target signatures. This has the result of creating both target and background
endmembers that are physically meaningful. Unfortunately, they too use least squares
estimates of the abundances even though physically meaningful abundances could be
estimated from their endmember signatures.

Our physics-based subpixel detection approach uses physically meaningful
estimates of both the endmembers and their abundances. We show this approach
leads to not only improved detection performance over previous approaches, but also
provides a level of insensitivity to estimation errors and provides contextual
information not obtainable with other methods. Additionally, we propose new
algorithms for nearly all facets of subpixel detection (shown in Figure 2) from

parameter characterization to threshold estimation.

\ 4

Threshold
Estimation

Subpixel
Detection

Background

Hyperspectral L.
YPersp Characterization

Image

v

Target
Characterization

Detection
Results

Target
Reflectance

Figure 2: Subpixel Detection Block Diagram
In Chapter 3, we present a novel way to estimate target radiance signatures

from reflectance measurements using only the target reflectance signature and the



hyperspectral image. This chapter provides an overview of radiative transfer theory
and how MODTRAN and other methods use this theory to estimate radiance
signatures from reflectance measurements. We explain how MODTRAN can be used
with proper weather, topographic, and geometric data to generate a target signature
for a specific hyperspectral image. From this, we develop a new in-scene algorithm
that performs similarly to MODTRAN, but uses only a target and reference
reflectance signature along with the hyperspectral image to estimate a target radiance
signature for subpixel detection.

In Chapter 4, we present a new method to estimate the number of endmembers
that maximize subpixel detection performance. The chapter gives a brief overview of
endmember extraction techniques and identifies the algorithms we use in this
dissertation to obtain physically meaningful endmembers. The chapter documents the
sensitivity of subpixel target detection to the number of endmembers showing how
slight errors in estimating the number of endmembers can cause severe losses in
performance. From this result, we compare a number of different algorithms to
estimate the number of endmembers and compare them to our proposed methods
relative to subpixel detection performance.

In Chapter 5, we present our physics-based hybrid subpixel detectors [12].
Unlike the subpixel detectors proposed by [41], [49], [58], and [71], we develop a
detector that uses all of the linear mixing model constraints including the non-
negativity and sum-to-one constraints of the abundances. Our work differs from
previous work because of how it models the data. The assumption in the literature is

that the error between the linear mixing model and HSI data can be modeled by zero-



mean noise with a covariance matrix of ¢°I. This has been shown to be erroneous in
[71]. Using this result, we model the remaining noise using a full covariance matrix to
account for sensor artifacts and nonlinear mixing effects not represented by the linear
mixing model. This results in a subpixel detector that has improved performance and
is partially insensitive to the number of background endmembers used.

In Chapter 6, we present a new algorithm to estimate a detection threshold for
a desired false alarm rate for any detector. One of the disadvantages of the hybrid
subpixel detectors is the use of the non-negativity constraints of the linear mixing
model. These constraints disallow a closed-form solution for the detector making
derivation of the target and background conditional distributions difficult at best. To
overcome this shortfall, we develop an adaptive threshold technique based on
Extreme Value Theory (EVT). We show the proposed technique outperforms both
theoretical estimates for Constant False Alarm Rate (CFAR) detectors as well as non-
parametric methods such as Monte Carlo estimates — especially when targets are
present in the imagery.

In Chapter 7, we summarize our work and present an example of the proposed
algorithms working together in a subpixel detection process. Besides providing
excellent detection of subpixel targets, the result shows the ability of these methods to
provide near real-time results using a minimal amount of ancillary information. This
result is important to transitioning hyperspectral subpixel detection algorithms from

research to practice.



Chapter 2: Hyperspectral Data

In this dissertation, we use hyperspectral imagery from two sensors: the
Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and the U.S. Army
RDECOM CERDEC Night Vision & Electronic Sensors Directorate (NVESD)
Sensor X. The chapter is therefore broken into two sections. Each section contains
information about the hyperspectral sensor, its images, available target reflectance
signatures, and corresponding ground truth information.

2.1. AVIRIS
2.1.1. Sensor Details

The AVIRIS imagery comes from the National Aeronautics and Space
Administration (NASA) Jet Propulsion Laboratory (JPL) at the California Institute of
Technology [111]. This sensor collects 224 contiguous spectral bands spanning the
wavelengths from 400 to 2500 nm. The sensor was primarily designed for
environmental remote sensing applications; therefore, the imagery collected has not
been focused on subpixel detection applications. Nevertheless, the AVIRIS sensor has
been well calibrated and does not contain any low SNR bands allowing us to use all
224 spectral bands for processing.

2.1.2. Imagery

We chose one image to use from the AVIRIS data sets: the Cuprite, Nevada
image [107]. From the Cuprite data set, we chose a sub-image containing a small
town shown in Figure 3. The image itself covers a 10.4 km by 5.1 km swath of area
with each pixel measuring 17 m per side. While the AVIRIS imagery has not been

focused on subpixel detection applications, it can be useful to demonstrate the
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atmospheric compensation techniques in Chapter 3. AVIRIS images are delivered as
two images: the original radiance image collected by the sensor and another image
which is an estimate of the reflectance signatures at each pixel in the image using
known ground materials. These reflectance estimates will be used to identify how
well our proposed target characterization method identifies radiance signatures

generated from flat reflectance signatures.
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Figure 3: AVIRIS Image of Cuprite, Nevada

2.2. Sensor X
2.2.1. Sensor Details

The Sensor X imagery comes from the U. S. Army RDECOM CERDEC
Night Vision & Electronic Sensors Directorate (NVESD). The sensor collects 256
contiguous spectral bands spanning the wavelengths from 400 to 2500 nm. Along
with the sensor specifications, we received a spreadsheet containing information
about the sensor’s spectral bands. For example, the absorption bands for oxygen,

carbon dioxide, and water were well documented. The spreadsheet also identified low
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SNR bands in the imagery due to sensor artifacts. For our target detection application,
these bands are non-informative and only serve to increase processing time without
providing any benefits. Because of this, we did not use these bands as is typically
done in target detection applications [41],[70],[71]. After removing these bands, we
are left with 169 spectral bands for our subpixel detection experiments.

2.2.2. Imagery

We chose seven images to use in this dissertation. The first six images were
chosen because of their small fill factors (e.g., percentage of a pixel that is comprised
of target) and the difficult background in which the targets lie. The most difficult of
these areas is the tall grass site. At this site, the grass is high enough to partially
obscure the target causing the pixel fill factors to be smaller than expected. The other
two areas are easier since the targets are not obscured. Figure 4 shows the six images
with corresponding target locations.

The seventh image is shown in Figure 5. This image was chosen because the
targets were full or multi-pixel. This image was selected because the true target
radiance signatures could be extracted from the image. These signatures can be
compared to the target radiance estimates described in Chapter 3.. Without this
image, we would not know how well the target characterization algorithms were
performing. The image is only used for Chapter 3. Table 1 identifies each of the
images, the type of area imaged, the amount of area imaged, and the spatial resolution
of an individual pixel.

Unfortunately, the imagery we received was collected with an uncalibrated
sensor. This posed a significant problem. Some of the algorithms within this

dissertation use the physics-based model MODTRAN that calculates the radiance of
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an object from its corresponding reflectance signature. The radiance signature
generated by the model assumes the sensor is calibrated. When the sensor is not
calibrated, the model will predict signatures that will not match those in the imagery.

This mismatch is severe enough to render a target detection algorithm useless.
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Figure 4: Sensor X 1200m Imagery
(Target 1 “+’, Target 2, ‘0’, Target 3 ‘x’, Target 4 ‘*’)

To overcome this problem, we worked with Dr. Marc Kolodner of the Johns
Hopkins University Applied Physics Laboratory (JHU/APL). Using MODTRAN, we

generated radiance signatures for known background materials in the imagery. We
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compared the model-based signatures to the known signatures in the imagery. From
these comparisons, an offset and gain vector was created. This offset and gain was
applied to each image to vicariously calibrate the image. These new vicariously
calibrated images were then used for the experiments in this dissertation.
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Figure 5: Sensor X 300m Imagery
(Target 3 x’, Target 4 “*’)

Table 1: Description of Sensor X Imagery

Image Background Clutter Altitude | Area(m”) | Pixel Size
Density (m) (m?)
1 Short & Tall Grass High 1220 18811 0.1823
2 Sparse Grass Medium 1220 18811 0.1823
3 Sparse Grass Medium 1220 19464 0.1823
4 Short Grass Medium 1216 18815 0.1815
5 Sparse Grass Medium 1215 18542 0.1806
6 Sparse Grass Medium 1213 19097 0.1806
7 Sparse Grass Medium 313 7400 0.0241

2.2.3. Spectral Signatures

Besides the imagery, we received spectral libraries containing reflectance
signatures for both the targets and background materials. All signatures were
collected using hand-held spectrometers in the field. Due to this in-field data capture,
multiple signatures were created for each target and background material. These
signatures were averaged to form a signature for each material. This method was
chosen because the averaged spectral signature reduced variations that occurred when

measuring with the hand-held spectrometer.
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For the background, numerous signatures were collected. These ranged from
different types of vegetation to fiducial markers placed in the field for spatial
registration purposes. This information is typically not available in real-world
applications, but allows us to vicariously calibrate the images. The signatures are also
used as reference signatures to help estimate the amplitude of the target signature as
explained in Chapter 3.

From the target signatures, we chose four different targets. The targets were
chosen to provide a wide variety of spectral signatures. The targets are typically
pieces of metal or plastic small enough to achieve subpixel sizes at 1200m altitudes.
Additionally, the targets have different paints which cause the reflectance signatures
to vary from very strong (Target 1) to very weak (Target 4) as shown in Figure 6.
Table 2 provides a description of each target’s geometry, size, material, color, and
symbol used in figures throughout the dissertation.

Table 2: Description of Targets

Target Geometry Size (m”) | Material Color Symbol
1 Circle 0.0182 Plastic White +
2 Circle 0.0869 Metal Green 0
3 Square 0.1090 Plastic Green X
4 Circle 0.0869 Metal Dark Green *

Target 3 was an interesting case as that particular target had two spectral
signatures. The two signatures existed because it was discovered later that the targets
were made of slightly different plastics. The difference was very slight as can be seen
in Figure 6, but was significant enough that it was decided two signatures should be
used. We chose to use this target because it is the only case where we have multiple

target signatures for a single target type.
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Figure 6: Target Reflectance Signatures

2.2.4. Ground Truth

Along with the imagery and signatures we received from NVESD, we
received ground truth information identifying the target locations in the imagery. The
ground truth data contained object-level location information. Unlike pixel-level truth
which identifies the location of the targets for each pixel and their corresponding
abundances, object-level truth specifies an area in the image where the targets are
located. Therefore, the ground truth identifies the center of the target even though it
may span multiple pixels. Note that this statement is true even with subpixel targets
as the target could be located on pixel borders. Table 3 details how many targets are
in the seven images arranged by target type and image. The locations of each target in
the Sensor X imagery can be seen in Figure 4 and Figure 5.

Given object-level ground truth, we had to cluster the detector outputs to form

objects as pixel level analysis was not possible. To obtain these objects, a clustering
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threshold is applied to each image. This clustering threshold refers to a threshold that
combines adjacent pixels together to form an object which will be classified as either
target or clutter. Typically this threshold is chosen to include no more than 1% to 5%
of the pixels in the image depending on the application. In our analysis, we chose 1%
as we knew the number of targets was far less than 1% of the pixels in any one image.
Each cluster is assigned the maximum detection score from all the pixels that make
up the cluster. Along with the maximum detection score, each cluster is identified as
either target or clutter based on their location relative to the object-level ground truth.
This information can then be used to identify how well a detector performs.

Table 3: Target Ground Truth

Image Target 1 Target 2 Target 3 Target 4 All
1 20 42 0 0 62

2 0 0 12 9 21

3 0 0 25 23 48

4 20 30 0 0 50

5 0 0 15 12 27

6 0 0 28 25 53

7 0 0 24 24 48
All 40 72 104 93 309

From the ground truth information, we were able to extract target radiance
signatures from Image 7 due to the targets spanning multiple pixels. These “true”
target radiance signatures will be used in Chapter 3 to compare the estimated target
radiance signatures with the ones shown in Figure 7 andFigure 8. Each figure
contains all of the target radiance signatures found in the image (in gray) and their
spectral average (in black). Note the wide variability of target signatures in either
case. Despite our best efforts, some background signatures leaked into our “true”

target signatures. This occurred because even with four pixels on target, some small
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amounts of background signatures may still be present. This is especially the case for
Target 4 where the targets spanned on average 3.6 pixels.
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Figure 7: Target 3 Radiance Signatures in Image 7
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4000 T T T T

3500 F

-1
pm )
(%)
S
(=
(e

2500 F

1

-2

Radiance (wm “sr
. —_ [\®)
oS W (e
S S S
[e) (=) [e)

500

0 'l

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Wavelength (um)
Figure 8: Target 4 Radiance Signatures in Image 7
(Gray lines represent individual targets and black line represents the mean)

18



Chapter 3: Target Signature Characterization

An important part of subpixel detection is the correct characterization of the
target signature. As explained in Chapter 1, target characterization is especially
important for hyperspectral detection because the images are collected in terms of
radiance while the target signatures are measured in terms of reflectance. The reason
for this mismatch is due to the fact that target signatures are typically measured in
laboratories or in the field with hand-held spectrometers that are at most a few inches
from the target surface. Hyperspectral images, however, are collected hundred to
thousands of meters away from the target and have significant atmospheric effects
present. Therefore, a transfer function between radiance and reflectance must be
obtained. This transfer function is known as atmospheric compensation.

A number of algorithms have been developed to compensate for atmospheric
effects. The algorithms can be classified into two primary types: radiance inversion
methods and radiance projection methods. Radiance inversion methods were first
developed for spectral analysis purposes. Originally, hyperspectral imagery was used
to classify images into different natural phenomenon for applications such as mineral
mapping [59],[98],[107]. In order to accomplish this type of classification, the logical
path was to invert the image from radiance to reflectance and compare the resulting
corrected image to known spectral reflectance libraries. The idea in these programs
was not to identify a certain material, but to identify the constituent materials in the
image for mapping purposes. One such algorithm is FLAASH [3].

While this may be ideal for image analysts wanting to investigate spectral

signatures, it is not the best method for detecting subpixel targets. First, the
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algorithms process every pixel in the image requiring significant processing time.
Second, the algorithms have to make simplifying assumptions to perform the
inversion because it is intrinsically an ill-posed problem [75]. So, while these
programs have enjoyed some success in target detection applications, they are better
suited for spectral analysis by operators that can make informed judgments.

The other class of atmospheric compensation algorithms is based on radiance
projection methods. These methods project a reflectance signature into a radiance
signature for a particular hyperspectral image. Murphy and Kolodner have one of the
most direct approaches: calculate the radiance of a target signature at the sensor using
real-time weather predictions and the known source-target-receiver geometry [75].
This type of atmospheric compensation algorithm makes good use of computational
physics using the MODTRAN atmospheric model [3]. It also provides different
shading conditions so targets can be modeled in both full sun and full shade (such as
in the shade of a tree or cloud). Although this approach is the most direct and
computationally simple, it also requires the most ancillary information to work
properly. Weather data must be timely and the source-target-receiver geometry
known precisely. For new data collections, this is usually not hard information to
obtain; however, for past data collections, this method typically cannot be used

Healey and Slater simultaneously developed another forward projection model
that was designed to be atmospheric invariant [45]. Based on Healey’s earlier work
with color imagery, they developed an algorithm that projected a target reflectance
signature into approximately 17,000 different environments. From these 17,000

radiance signatures, they used SVD to create a nine-dimensional subspace that could
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be used in any environment. Results show that this method works well, but requires a
significant amount of pre-processing to create the invariant subspace.

A final set of methods use in-scene information to calculate the target radiance
signature. These approaches directly estimate atmospheric effects by using
information present in the imagery. The most popular of these is the Empirical Line
Method [26]. This method uses an adaptive background estimator to find any
vegetation in the imagery. Vegetation is used because it is typically ubiquitous and
has a well-known reflectance signature. Using the estimated vegetation signature
from the image and the known vegetation reflectance signature allows a direct
calculation of the transfer function without MODTRAN or any other physical
modeling technique. The only issue with such an approach is that certain
environments may not have vegetation in the image such as urban environments,
winter scenes, or desert scenes.

This chapter presents our work and analysis of model-based and in-scene
based radiance projection methods. To begin, we describe in some detail the
atmospheric transfer function and the simplifying assumptions made for estimation
purposes. We next describe two current methods for atmospheric compensation: an
in-scene method developed by Piech and Walker [80] and a model-based method
using MODTRAN with radiosonde information. . We then present our own in-scene
method for target characterization called Average Relative Radiance Transform
(ARRT). The final sections of the chapter compare ARRT to MODTRAN. It will be
these two methods which we will use throughout the dissertation for target signature

characterization.
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3.1. A Review of Radiometry

Radiometry is the measurement of electromagnetic fields typically in the
visible and infrared wavelengths [93]. To understand the measurements at an optical
sensor, radiometry (or radiative transfer theory) has produced a model of how
photons (light) propagate from the sun and through the atmosphere. By understanding
this model, we can understand which parts of the radiance signature measured at the
sensor are produced by the target of interest and which are produced by the
surrounding environment. We can also understand which parts of the model are more
critical than others for target characterization.

For this dissertation, we only cover the most basic radiometric principles;
however, there are two excellent books available by Schott [93] and Hapke [40] that
provide greater details about this interesting theory. Schott’s book is meant primarily
for the general scientist and engineer interested in remote sensing. Hapke’s book
provides a more thorough analysis of the governing equations of light. Both are
excellent resources and much of the material in this section is derived from both of
these texts.

For this dissertation, we are concerned only with those photons that can be
collected by a hyperspectral sensor in the reflectance domain. The reflectance domain
identifies a range of electromagnetic wavelengths from 400 nm to 2500 nm where
light is primarily reflected from objects. As the wavelengths increase, the dominant
effect becomes self emittance of photons (such as heat). While this is an interesting
regime, our data is all collected in the reflectance wavelengths and as such, we will

restrict our analysis to these wavelengths.
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Figure 9: The five sources of light in the reflective wavelengths
(A: Direct Sunlight, B: Sky Light, C: Upwelled Radiance, D: Multipath Effect, E:
Adjacency Effect)

In the reflectance domain, there are five main sources of light collected by a
sensor: direct sun light, sky light, upwelled radiance, multipath effect, and the
adjacency effect. These multiple sources of light are shown in Figure 9. Sun light is
the light generated by the sun that passes through the atmosphere, reflects off the area
being imaged, and is collected at the sensor. Sky light is the light that is scattered in
the atmosphere which reflects off the area being imaged and back to the sensor.
Upwelled radiance is the light that is scattered in the atmosphere that never reaches
the area being imaged. Instead, this light is scattered directly into the optical path of
the sensor. Multipath effects are due to light that reflects off of multiple objects in a
scene before arriving at the sensor. The adjacency effect occurs when light scatters
off of other background objects near the area being imaged into the optical path of the

sensor [52]. The last two sources of light are very small compared to the first three
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and are typically not computed in most models. Because of these reasons, only the
first three light sources will be treated in greater detail.

3.1.1. Sun Light

The most obvious source of light is the sun. Photons are generated at the sun
and pass through the atmosphere onto the object being imaged and back to the sensor.
Along the way, the spectral properties of the light are changed as the photons are
absorbed and scattered through the atmosphere. These effects can be mathematically
modeled as

Lsun(‘xﬂy’ﬂ’): KZ{(Zgﬂzu"‘gv’¢v9/1)R(x9y92')Td(Zg51909¢09/1)E0(i)C0S190 (1)

where Ly, is the radiance seen at the sensor generated from sun light, K is the amount
of energy at the top of the atmosphere, 7, is the upward atmospheric transmittance, R
is the reflectance of the object being imaged, 7, is the downward atmospheric
transmittance, and E is the exoatmospheric spectral signature of the sun. All of these
quantities are a function of the spectral wavelength A and most of the quantities are
based on the geometry of the source (sun), target (object being imaged), and receiver
(camera) geometry as shown in Figure 10. The geometries are based on cylindrical
coordinates where z, is the elevation of the sun, z, is the elevation of the camera, 6, is
the declination of the camera from a normal vector to the surface, 6, is the

declination of the sun from the same normal vector, ¢ is the azimuth of the sun and

@, 1s the azimuth of the camera.
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Figure 10: Source-Target-Receiver Geometry

3.1.1.1. Solar Spectral Signature E,

For light to reach the sensor, light must first be generated. Ideally, the light
source should be spectrally flat equally distributing the energy across all wavelengths.
This can be accomplished in a laboratory setting, but in hyperspectral applications,
the light source is typically the sun which has its own spectral signature. The sun’s
atmosphere 1s made of 73.46% hydrogen, 24.85% helium (by-product of the fusion of
hydrogen atoms), and a fraction of other naturally occurring elements. These gases
absorb certain wavelengths of light causing the documented Fraunhofer Absorption
Lines [55]. Additionally, the fusion reaction produces more energy in the visible
wavelengths. When these two effects are combined, it produces the typical solar
spectrum seen in Figure 11. Thus, all images are colored with this solar spectrum.

The amount of sun light that reaches an object is a function of the sun
declination angle and the downward atmospheric transmittance. The declination angle

determines how much sun light directly hits an object. For example, when the sun is
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directly overhead, the declination angle is zero and all the sun light reaches the object
(cos(0°) = 1). When the declination angle is 60°, the amount of energy is only half of
the energy when the sun is directly overhead. The interesting result of this effect is
that the declination angle can be caused by either the sun being lower in the sky or the
object sitting on a non-level surface. Thus, besides the angle of the sun relative to the
horizon, even minor changes in topography can change the overall amount of sun

light an object receives.
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Figure 11: The Solar Spectrum

3.1.1.2. Downwelled Atmospheric Transmittance T,

The other effect that reduces the sun light reaching an object is the
downwelled atmospheric transmittance. The downwelled atmospheric transmittance
quantifies the scattering and absorption effects that occur as light passes through the
atmosphere. Scattering disperses the photons out of the direct path of the object

thereby reducing the amount of light reaching the ground. The other dominant effect
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is absorption which reduces the energy in certain wavelengths due to such molecules
as water and carbon dioxide. By the time the light reaches the object being imaged, it
has both the spectral properties of the sun and the intervening atmosphere as shown in
Figure 11.

We can model how the atmosphere affects the sun light using a number of
cylinders stacked on top of one another representing different altitudes. Each of these
cylinders has a certain temperature, pressure, and humidity. These measurements
dictate the amount of absorption and scattering that occurs within each cylinder and at
each wavelength. Near the top of the atmosphere, there are very few particles and
hence the three measurements are not as critical as near the bottom of the atmosphere.
Thus, the cylinders are tall at the top of the atmosphere and become smaller as they
reach the surface. This occurs because the dense atmosphere is located near the
surface and causes a significant portion of the transmittance effects. This dense
atmosphere is also the most variable as weather changes occur mostly in this region
making signatures vary from one location to another.

3.1.1.3. Reflectance R

Once the sun light reaches the object, the reflectance of the object dictates
which wavelengths of light are absorbed and which are reflected in various directions.
The spatial reflectance attributes of a material are described by its bidirectional
reflectance distribution function (BRDF). This function measures the reflectance for
all wavelengths and input-output angles. A full BRDF characterization of a material
is rare; so, materials are typically classified into gross categories ranging from
specular reflectors to diffuse reflectors (also known as Lambertian). Specular

materials reflect light in one direction such as mirrors. Diffuse reflectors reflect light
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in all directions equally such as flat paint. Most materials fall between these two
categories, but tend to be more diffuse then specular. Because BRDF
characterizations are rare and most materials can be treated as diffuse, we assume
diffuse reflectors for the remainder of this dissertation.

3.1.1.4. Upwelled Atmospheric Transmittance T,

After the light has been reflected from the object being imaged, it passes back
through the atmosphere to the sensor. The upwelled atmospheric transmittance
quantifies these atmospheric effects. Upwelled atmospheric transmittance is very
similar to downwelled atmospheric transmittance. The real difference between the
two transmittances is upwelled transmittance only affects light between the object and
the sensor. Therefore for low altitudes (e.g. 300m), this effect is minimized. On the
other hand, the sensor could be space-borne in which case the light passes through the
entire atmosphere. Either way, T, is modeled the same way as T, using cylinders of
the atmosphere along the light path to quantify the scattering and absorption effects.
As described in (1), the light reaches the sensor after being affected by the solar
spectral signature, downwelled atmospheric effects, reflectance of the object being
imaged, and upwelled atmospheric effects.

3.1.2. Sky Light

In the previous sections about atmospheric transmittance, scattering played an
important part of how the spectral signature of the sun light was changed. This
scattering of light has another side effect causing a secondary light source called sky

light. Sky light can be mathematically modeled as
27 w2

Ly (0,9, 2)= R, 7, DT, (2,.2,.9,.4,,2) | [E.(6.4.4)cosIsinadedg  (2)

$=0 0=0
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where Ly, is the sky light radiance at the sensor, R is the reflectance of the object
being imaged, 7, is the upwelled atmospheric transmittance, and E; is the amount of
energy scattered by the atmosphere.

Sky light takes a very similar path to sun light. Once the light reaches the
object being imaged, it reflects the same as the sun light (assuming a diffuse
material), and is reflected back up through the atmosphere to the sensor along the
same path as the sun light. The main difference between sky light and sun light is the
source of sky light is the scattering of photons in the atmosphere. These scattered
photons arrive at the object being imaged from all directions. Therefore, these
different patches of sky light are integrated over the hemisphere above the object
being imaged. This produces the two integrals seen in (2) replacing the

T,(zy, 30y, DE(A)cosd, term in (1).

There are three types of scattering that take place. The most well known
scattering effect is Rayleigh scattering as explained by Lord Rayleigh to answer why
the sky was blue [67]. Rayleigh scattering occurs when light interacts with the very
small molecules that make up the atmosphere. The scattering occurs mostly in the
blue wavelengths while other wavelengths are absorbed creating the blue color of the
sky.

The other well known scattering effect is Mie Scattering [105]. This type of
scattering occurs when photons interact with particles that are roughly the same size.
These particles are typically composed of aerosols, combustible by-products, and
small dust particles. This effect causes the scattered light around cities to be much

different from the light scattered in rural areas.
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The final effect is called non-selective scattering. This type of scattering
occurs when the particles are much larger than the photons of light. Examples of such
particles are water droplets and ice crystals that are due to cloud formations. Thus,
scattered light can be affected by the amount and types of cloud cover in the image.
Theses different scattering effects explain why images taken of rural areas on
cloudless days can be very different from images taken of cities on partially cloudy
days.

3.1.3. Upwelled Radiance

While some light is scattered so that it illuminates the object, other light is
scattered directly towards the sensor. Unlike all the previous sources of light,
upwelled radiance, L,, never reaches the object being imaged. This light is scattered
directly into the sensor’s optical path from the atmosphere. Like sky light, it
undergoes the same three scattering processes making it vary based on location and
weather conditions. This has two effects on the imagery. The first effect reduces the
overall contrast of the image. The second effect causes a blue shift (an increase in
energy at the blue wavelengths) as the upwelled radiance term is typically dominated
by Rayleigh scattering.

A good example of upwelled radiance is fog. As fog settles in, our eyes cannot
see objects far away because they are obscured by the scattering of light towards our
eyes from the water vapor particles (Mie and non-selective scattering). The effect is
those objects disappear in a haze of gray. This effect is always present except it
typically scatters such a small amount of photons relative to sun and sky light to make

1t undetectable in most situations.
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The same can be said about the upwelled radiance reaching a sensor. In
normal environmental conditions, upwelled radiance has a very small effect relative
to the other sources of light. However, as the sensor is placed higher in altitude, the
scattering effect becomes more predominant and can start to reduce the contrast of the
image at the sensor. This occurs because there are more particles and thus more
opportunities for scattering to occur.

3.1.4. Atmospheric Transfer Function

We can now mathematically define the radiance L reaching a sensor from an
object with reflectance R as
L(xayaﬂ’)z R(xayaﬂ’)Tu(Zgazu319v9¢v52’)Td(Zg31909¢032‘)KE0(ﬂ”)005190
27 7w/2

+ RO AT (2,02,,8,,8,,4) | [E,(0.4,2)cos 9sinadbdg  (3)

$=0 6=0

+L,(z,,2,,9,,0,,1).

The radiance equation in (3) states that the radiance at the sensor is a linear
combination of the sun light, sky light, and upwelled radiance contributions.
Although the final equation is a linear combination, the previous sub-sections detail
how complex the atmospheric transfer function is to compute. Detailed weather
information, source-target-receiver geometries, topography, and BDRFs are required
to solve all the necessary functions. Typically, all of this information is not available
and algorithms have to make simplifying assumptions. What assumptions are made
depends on the type of algorithm.

3.2. Current Target Characterization Algorithms

Nearly all algorithms that convert reflectance to radiance or vice-versa are

based on (3). The difference between these algorithms is the simplifying assumptions
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they make and how they estimate each of the light sources. These algorithms can be
broken down into two general methods: model-based methods and in-scene based
methods.

3.2.1. Model-Based Methods

Model-based methods attempt to solve (3) directly. This type of solution
requires a wealth of ancillary information besides the image. From Figure 10, the
exact locations of the source, target, and receiver are required. This information is
easy to obtain from the Global Positioning System (GPS). The location of the sun
relative to a ground location is also well understood and can easily be found on the
internet for a given location and time.

The information that is not as easy to obtain is weather data. In the modeling
of atmospheric transmittance, the temperature, humidity, and pressure at varying
levels of altitude need to be measured (i.e, the cylinders of the atmosphere).
Typically, this is done using radiosondes. Radiosondes are weather sensors attached
to balloons that measure all the needed weather information. Unfortunately,
radiosonde information is not always available or applicable. For example,
radiosondes are collected at certain locations which may be too far from the area
being imaged to be applicable. If radiosonde data is available, the information is
typically collected only twice a day and may describe the atmospheric profile that
occurred hours in the past.

Murphy and Kolodner developed another way to get the requisite weather data
[75]. If radiosonde data is not present or is inaccurate due to the aforementioned
issues, weather maps generated from weather stations can be used. These weather

maps produce an atmospheric profile that can be estimated via interpolation between
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weather stations. This information is fused with satellite imagery to produce an
accurate atmospheric profile at any location on the planet. This information is then
used as the model inputs.

Once the ancillary information has been collected, a computational model can
calculate the radiance for a given reflectance at any angle, source-target-receiver
geometry, and wavelength via (3). MODTRAN is arguably the most used
computational model [3]. It produces an estimate for every function in (3) and can
make estimates for large declination angles as well as areas with variable topography.
For most of the functions, it performs a direct calculation, but for the atmospheric
transmittance functions, it has to make a simplifying assumption.

The scattering and absorption is not only a function of humidity, temperature,
and pressure, but also of the constituent particles in the atmosphere. To model these
particles in the atmosphere, MODTRAN uses one of many atmospheric profiles for
urban, desert, or rain forest areas to name a few. Each profile uses a lookup table to
provide an estimate of how light is scattered based on the types of particles found
above each area type. Unfortunately, real world situations can vary significantly from
the atmospheric profiles included with MODTRAN. While this may not greatly effect
the radiance estimate, such assumptions can be very important when estimating weak
target signatures such as Target 4.

Model-based methods have become the standard for atmospheric
compensation techniques. They can make estimates for every parameter and function
in the atmospheric transfer function. These estimates can take into account any type

of topography and source-target-receiver geometry — even when the sensor may be on
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or near the ground. To accomplish this calculation, they require a significant amount
of ancillary information about source-target-receiver geometry, weather, and
atmospheric profile type.

3.2.2. In-Scene Methods

The problem with model-based methods is that we sometimes lack all of the
necessary ancillary information (or any estimate thereof). This is especially true with
images collected in the past where such information was simply not collected.
Because the information is either inaccurate or not available, another way to estimate
the atmospheric transfer function was created using only the image data. These
methods are called in-scene methods.

In-scene methods have to make a number of simplifying assumptions as well.
The first assumption is that the area being imaged is small enough that the
atmospheric profile (azimuths, altitudes, declination angles, etc.) is the same for all
pixels even though this may not be true in a number of cases (e.g. water vapor [32]).
The second assumption is that the pixels being used to estimate the atmospheric
transfer function have Lambertian scattering properties. This assumption again is not
necessarily true [89], but materials can be found that have near Lambertian properties
that are acceptable for in-scene methods. Third, pixels that contain only one material
(pure pixels) must exist in the image. Thus, in-scene methods are best for aerial
images that cover a small amount of ground area.

3.2.2.1. Piech and Walker Shadow Method

One of the earliest and most accurate in-scene methods was developed by
Piech and Walker [80]. They noted that shadow regions could be used to estimate the

three main light sources in the atmospheric transfer function. Instead of estimating

34



detailed functions such as atmospheric transmittance, the atmospheric transfer
function was simplified to

L(A)=R(A)L,,, (1) +R(AFLy, (D) +L, (1) 4)

where F is the fraction of the sky above the area being imaged (i.e., in shadow zones
the amount of sky not blocked by the object creating the shadow). All x,y coordinates
have been removed since we assume Lambertian scattering with equal amounts of
light at each pixel.

The key to this method is realizing that in shadow zones, (4) becomes

Lyyuge (A)= ROFLy, (A) + L, (1) ()

since the sun light term has been reduced to zero. The algorithm therefore requires a
material that is in both direct sun and shade conditions. When this occurs, the sunlight
term can be easily calculated by taking the difference between (4) and (5) and solving
for the sun light term to obtain

LA - LD
- R(A) '

L, (A) (6)

To isolate the upwelled radiance term, equations (4) through (6) can be
combined so the total radiance term is a linear regression of the shade radiance term
as

L,,(A)+FLy (1)

L(A)=—" LBt M, (1) (A)+L,,(2)

FL,, (2) siade (4) FLy, (2) w " (7)
=m(A)L .4, (1) +b(2).

sun

Using multiple materials with varying reflectance signatures, (7) can be solved to
obtain the m and b terms at each wavelength. Rearranging these terms provides the

upwelled radiance estimate
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b(1)

L (A)= . 8
O T ®)
Equations (6) and (8) provide a way to establish the last light source such that
L(A)-R(AL,,, (1)~ L, (1)
Ly, (A)= —. ©)

R(AVH)F

This algorithm provides estimates of each light source within the atmospheric
transfer function. The algorithm requires a shadow area which contains numerous
pixels of the same material in both full sun and full shade conditions. Additionally,
the algorithm requires multiple materials to be identified (historically by hand) to
make estimates of the upwelled radiance term. In cases where these constraints

cannot be met, we must rely on other methods.

3.2.2.2. Empirical Line Method

The empirical line method (ELM) is simpler than the shadow method and
does not require any shadows in the imagery. ELM also does not estimate all of the
light sources in the atmospheric transfer function. Instead, ELM makes the following
simplification

L(A)= R(A) L.y (A) + L, (4) (10)

where the L +g, term combines the sun light and sky light into a single term
assuming F = [ due to the lack of shadows. Equation (10) identifies that the total
radiance term is a linear combination of the upwelled radiance, the combined sun and
sky light terms, and the reflectance. Thus, a linear relationship could be established
by identifying a material with known reflectance in the scene. From this knowledge,

the combined sun and sky light and upwelled radiance terms could be calculated for
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each wavelength via linear regression. The linear regression is performed to estimate
reflectance signatures from the radiance measurements in the image.

Various papers have identified numerous ways ELM can be implemented. All
perform linear regression, but vary the number of materials required to estimate the
parameters. The simplest implementations use one material and assume zero
reflectance objects have zero radiance [26],[73]. This, of course, is not true as it
assumes the upwelled radiance term simply does not exist. Not surprisingly, studies
show errors of up to 20% in the predicted reflectance when compared to the true
reflectance signature. Further studies used multiple known materials [26],[83] which
show that four materials make the best estimates varying only a few percent from the
actual reflectance signature.

While ELM has removed the need to have shadows, it does still require a
significant number of known materials exist in the image. In cases where the study
area is well documented or panels of known reflectance are placed in the scene, ELM
performs very well. However, in images where only one material is well known,
another method called dark object subtraction may be more applicable.

3.2.2.3. Dark Object Subtraction

Dark object subtraction is very simple. The idea is to find the minimum
radiance values for each band in the image. These minimum values should represent
the upwelled radiance assuming that the dark pixels have near-zero reflectivity. Using
this dark object estimate as the upwelled radiance term allows the linear regression in
ELM to take place without needing more than one known material.

This assumption holds in the NIR and SWIR bands, but the visible bands can

have significant errors. The errors are especially troublesome when working with
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subpixel targets which have low reflectance signatures. These low reflectance values
from the targets inadvertently become part of the estimated upwelled radiance
estimate. The overall effect in such cases is a corruption of the atmospheric transfer
function and thus it is not well suited for subpixel detection.

3.3. Average Relative Radiance Transform

Another way to estimate the atmospheric transfer function is to use detection
theory. There are a few reasons for approaching target characterization in this
manner. First, the imagery does not have all the necessary ancillary information
required by model-based methods. Second, the in-scene methods require user
interaction to identify the materials with known reflectance in the image. This can be
a time consuming process requiring a person with significant knowledge of remote
sensing. Third, the simpler in-scene methods requiring the least amount of
information are the most variable making them inappropriate for subpixel detection.
Fourth, both in-scene and model-based methods were developed for analysis
purposes. The idea was to map the radiances measured in the image back to
reflectance values for comparison against spectral libraries for environmental
research such as land class mapping and deforestation studies.

These reasons led us to develop a new atmospheric compensation algorithm
for subpixel detection applications. To make subpixel detection applications
accessible to a wide variety of users, the target characterization algorithm should
automatically generate a target signature that can be used by a detector with little or
no user intervention. The method should also use as little ancillary information as
possible because this data may not always be available (e.g. historical image

collections or analysis of areas for which information is not available). Finally, the
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target characterization algorithm needs to provide enough fidelity that a detector can
identify the target even among materials with similar spectral signatures.

The aforementioned constraints led us to develop the Average Relative
Radiance Transform (ARRT). ARRT has a number of advantages. First, the algorithm
is computationally efficient. Instead of projecting thousands (possibly millions) of
pixels from radiance to reflectance, ARRT projects a few target reflectance signatures
to radiance — a thousand or more so improvement in processing time. Second, ARRT
is an in-scene atmospheric compensation technique requiring very little ancillary
information. The algorithm only requires the image, the desired target reflectance
signature, and a reference background reflectance signature. Source-target-receiver
geometries and detailed weather information are not required. Third, ARRT is fully
automated requiring only the aforementioned input signatures and image. Fourth,
since ARRT is an in-scene method, the sensor need not be calibrated. As long as the
errors in the sensor are uniform across the image, ARRT will account for the
calibration errors where model-based methods cannot.

The original ARRT idea is based on the Internal Average Relative Reflectance
algorithm (IARR) [59]. The TARR algorithm uses the spectral mean of an image as
the atmospheric transfer function (ignoring upwelled radiance effects). The
fundamental idea assumes that the image is comprised of many different underlying
reflectance signatures that cancel one another when averaged together. The end result
is the average spectral signature has a flat reflectance with some unknown
multiplying factor K. Our early work demonstrated that applying IARR to generate

target radiance signatures could work for subpixel detection algorithms [15]. The
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drawback of the method is the assumption that the reflectance signatures cancel one
another. Typically, the spectral mean still contains some of the reflectance
characteristics of the dominant material. For example, if vegetation dominates the
image, the spectral mean will have characteristics of the vegetation making it
ineffective for certain targets.

This drawback led us to an updated ARRT algorithm that uses a two-pass
detection method. The first detection pass identifies pixels with radiance values that
most likely contain flat reflectances. This is very much like the underlying idea in
IARR; however, ARRT directly detects these radiance signatures in the image instead
of relying on the spectral mean.

To detect these highly probable flat reflectance materials in the image, a band
ratio technique is employed. Band ratio techniques have been used in other analyses
to identify vegetation, soil types, and other materials [48],[88]. For this application,
we use a ratio between bands located on either side of the red-edge wavelength (700
nm). The red-edge effect causes a significant increase in reflectivity near 700 nm that
corresponds to chlorophyll content (Figure 1) [90]. For radiance signatures generated
from flat reflectance materials, the radiance drops slightly from 550 nm to 730 nm
causing a band ratio less then one. Empirically, we found the value 0.8 to work best at
identifying flat radiance signatures using both real-world HSI data and flat reflectance
signatures generated by MODTRAN. Using this band ratio, radiance signatures with
highly probable flat reflectances are found in the image and averaged together. As
with TARR, the average reduces material and sensor variability to provide a better

estimate of the flat reflectance than any single pixel found in the image.
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To demonstrate the band ratio technique, we use the AVIRIS image in
Chapter 2. For this data, we have two images with one being the true radiance
measurement at the AVIRIS sensor and the other image being the estimated
reflectance signatures for each pixel. The reflectance signatures were generated using
model-based atmospheric compensation techniques validated by ground
measurements of the scene [21]. Therefore, we will assume the reflectance estimates
are accurate.

Figure 12 shows the results of the first stage of the ARRT algorithm on the
AVIRIS data. In the top sub-figure, the mean spectrum of the radiance signatures
chosen by ARRT to have highly likely flat reflectances is plotted. Using those pixel
locations, we calculate the mean reflectance signature from the AVIRIS data in the
second sub-figure. The reflectance is nearly flat across the spectrum except for some
slight nonlinear effects near the lowest wavelengths. This slight decrease in
reflectance is most likely an artifact of the AVIRIS reflectance estimation model. For
example throughout the entire AVIRIS image, no one signature has a flat reflectance
despite the presence of concrete in the image — a material with a known flat
reflectance. Nevertheless, ARRT is finding radiance signatures that have a nearly flat
reflectance signature.

The result of the first detection pass determines the spectral shape, but not
amplitude. The average flat radiance signature is mathematically expressed as

Ly (D)= RL,, 0 (A) + L,y (A) (11)

sun+sky

where Ly, 1s the flat radiance signature estimated from the image. Because we

assume the reflectance is flat, the reflectance term R should be constant for all
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wavelengths. Additionally, Lg, includes the upwelled radiance term which causes a
blue shift and loss of contrast as detailed in Section 3.1.3. Nevertheless, the Ly, term
contains most of the spectral shape characteristics. Therefore, multiplying a
reflectance signature by Ly, obtains a good representation of the spectral shape of the
target material; however, the amplitude is still unknown as we do not have an
estimate for R.
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Figure 12: Comparison of Mean Radiance and Reflectance Estimates Using ARRT
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It has been proposed that the amplitude mismatch is not problematic for
detection applications. This statement is true in full pixel detection algorithms which
use a replacement model (i.e., the pixel is either background or target, but not both).
For full pixel target detection, the detectors normalize the pixels and desired target
signature by their L* norm (see Spectral Angle Mapper [54],[95]). The result of such
a normalization procedure makes the shape of the spectral signature the important
determining factor as opposed to the amplitude. For replacement models, this is a
desired result.

In subpixel target detection, the model is additive (i.e., the pixel is background
or background plus target). To understand what happens if we divide a pixel by its L*

norm, we describe a pixel using the linear mixing model introduced in Chapter 1:

x =X _ - " o (12)
.

Unlike full pixel targets, subpixel targets contain a number of background
endmembers that are not a simple linear combination of their norms (i.e., cross terms
exist in the solution). Therefore, normalizing the pixel, the background endmembers,
and target spectra independently does not achieve the same result as full pixel target
detection.

Because of this result, subpixel target detection requires a signature that is
correct both in shape and amplitude. To estimate the amplitude, a second detection
pass is required with a known reference material. Known reference materials refer to

signatures within the image for which their reflectance signature is known. For
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example, some ELM implementations use vegetation as a reference material. ARRT
has no restriction on the reference material except that it has a moderate to strong
reflectance signature and occurs as a pure pixel in the image.

A number of methods exist to choose a proper reference material. For
example, reference signatures can be found based on the geographic region where the
image was collected. If the image was collected over a desert region, sand would be
an excellent reference signature while in forests, certain deciduous tree varieties
would be a better match. All of these signatures are freely available from the United

States Geological Survey (USGS) website (http://speclab.cr.usgs.gov/). Additionally,

the USGS and other organizations have land class databases that describe the natural
attributes of any area on the planet. From these two sources, a reference material for
any image can be found.

Once a reference material and its corresponding spectral signature have been
identified for the image of interest, the ARRT algorithm uses the Spectral Angle
Mapper (SAM) algorithm to find the corresponding reference radiance signatures in
the image [54]. Those pixels that pass a detection threshold are then ranked by their
detection score. The top N detection scores are averaged to obtain the corresponding
reference radiance signature for the image. Note we do not use the top N detection
scores directly; instead we use the top N detection scores above a detection threshold.
The reasoning behind this decision is that a given reference signature may not
actually be within the image and the algorithm should not blindly use detection scores

that fail to pass a minimum threshold. If there are no detections found in the image,
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ARRT will inform the user and ask for another reference signature that better matches
what is available in the image.
If a reference radiance signature is found, it is used to calculate the unknown

reflectance R value in (11). The solution is

o LR, (13)

me 2
where R,.r1s the reflectance signature of the reference material and L, is the radiance
signature estimated from the image for the reference material. R can be estimated
assuming the reference signature has a high reflectance signature thus minimizing the

effect of the upwelled radiance term.

An estimate of the upwelled radiance term can also be calculated as

I%Lref (A) =Ly, (DR, (A), A <T700nm

) (14)
0, A =>700nm

L,(A)= {

The estimated upwelled radiance term is the difference between the estimated
radiance signature and the detected radiance signature of the reference material in the
visible wavelengths. In the near infrared and short-wave infrared wavelengths, errors
due to noise dominate the signature. In the visible wavelengths, the Rayleigh and Mie
scattering effects dominate, being significantly stronger than the error terms; thus, we
clip the estimated upwelled radiance to only affect the visible wavelengths.

The final estimated target radiance signature can be calculated as

Lﬂat (j’)
R

T(4) =[ —iu,,mJRT(A)+LL,,(A> (15)
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where Ry is the reflectance signature of the desired target. To help clarify the ARRT
algorithm, Figure 13 provides a block diagram describing the two-pass detection

process and what inputs are necessary at each stage to arrive at (15).
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Figure 13: ARRT Block Diagram
Similar to other in-scene atmospheric compensation techniques, ARRT is only
valid for certain conditions. First, ARRT was designed for aerial imagery where the
upwelled radiance terms are small compared to the sun light and sky light terms.
Second, ARRT requires a reference signature that has moderate to high reflectivity

and has at least one pure pixel in the image. Currently, ARRT does not handle
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shadow zones, but this can be addressed in another version that merges these
techniques with Piech and Walker’s work [80]. This will be discussed in more detail
in Chapter 7.

3.4. Experimental Results

As with any atmospheric compensation algorithm, certain assumptions had to
be made with ARRT. To validate whether these assumptions are valid and allow
ARRT to produce useful target radiance signatures, we have designed two
experiments. The first experiment uses Image 7 from Sensor X to directly compare
target signatures generated by MODTRAN and ARRT to known target radiance
signatures in the image. The second experiment compares target radiance signatures
estimated using MODTRAN and ARRT relative to subpixel target detection
performance.

Besides the imagery used for these experiments, a wealth of ancillary data was
also collected. Radiosonde information was available from a nearby airport; however,
this data was six hours old by the time the imagery was collected. Source-target-
receiver geometry was also well documented as GPS was used on the airplane
carrying the sensor. Numerous hand-held spectrometers were used on the ground to
measure the reflectance of both target and background materials. While the sensor
was not calibrated, the soil reflectance and radiance signatures were measured to
correct for calibration errors via vicarious calibration as explained in Chapter 2. All of
this ancillary data makes the following comparisons between MODTRAN and ARRT

possible.
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3.4.1. Comparison of Target Radiance Signatures

This experiment was used to validate the ARRT algorithm produces target
signatures that match the actual target radiance signatures in an image. Image 7 from
Sensor X was used for this experiment. The image was flown at 313m altitude so that
each pixel imaged 0.0241 m” of area. The image contains Targets 3 and 4 with areas
of 0.1090 m” and 0.0869 m” respectively. Targets thus spanned on average 4.5 and 3.6
pixels respectively.

Because the targets are multi-pixel, using the ground truth we received with
the image, we were able to extract the true target radiance signatures from the image
as shown in Figure 7 andFigure 8. These figures show the spectral variability of each
target and their corresponding mean spectra. For Target 3, the mean spectrum is used
in this experiment. For Target 4 however, we used only one signature pulled from a
pixel that contained pure target spectra. Unfortunately, the smaller Target 4 only
covers 3.6 pixels and thus has some background signature that “bleeds” into the target
area as explained in Chapter 2. This minor corruption of the target signatures can be
very serious when dealing with low reflectance targets. When the mean spectrum for
Target 4 was used to test the subpixel detectors, it provided the worst detection
performance supporting the hypothesis that many of the “true target” signatures were
corrupted by background.

ARRT and MODTRAN were used to estimate Target 3 and Target 4 radiance
signatures for Image 7. In the case of ARRT, two variants were used: one version
estimated the upwelled radiance term while the other did not. The three estimated
radiances were plotted against the known Target 3 and 4 radiance signatures in Figure

14 andFigure 15 respectively.

48



4000 L] L] L] L] L] L] L] L] L]

True Signature
3500F MODTRAN
— ARRT
~ 3000 © g\ YL e ARRT w/o Lup 7]
g

25001

1

-2

Radiance (wm “sr
—_— —_— [\]
() (4 ()
(=] (] (=]
[« [« [«

500

0 3§ 3§ 3§ 3§ P 3§ W’;\\“
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Wavelength (um)

Figure 14: Comparison of Atmospheric Compensation Algorithms for Target 3
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Figure 15: Comparison of Atmospheric Compensation Algorithms for Target 4
In addition, quantitative measurements are presented in Table 4. For each

algorithm and target, two metrics were created measuring the similarity in amplitude
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and similarity in shape to the true target signature. The metric for measuring the
amplitude similarity is

a:HS—S ) (16)

The metric for measuring the shape similarity is the angle between the spectral

signatures

(17)

The estimated target radiance signature that minimizes the above metrics provides a
better match to the true target radiance signature.

Table 4: Quantitative Comparison of Atmospheric Compensation Algorithms

Target Metric MODTRAN ARRT ARRT
(No Lup)
3 o 5664 2547 1888
0 5.86° 4.00° 2.98°
4 o 1515 1648 2342
0 9.81° 7.83° 10.49°

Comparing the signatures using Figure 14, Figure 15, and Table 4, ARRT
estimates the target radiance signatures well. For Target 3, ARRT outperforms
MODTRAN in matching the true target signature. The shape and amplitude is a better
match and as such we expect to have better detection performance using the ARRT
signature. Interestingly, the ARRT version without an upwelled radiance is
marginally better than the standard ARRT algorithm.

For Target 4, the results are mixed. MODTRAN estimates the amplitude very
well, but does not do as well estimating the overall shape of the signature. The ARRT

algorithm estimates the shape better than MODTRAN, but underestimates the
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amplitude. The ARRT algorithm without the upwelled radiance term performs the
worst of all the variants. All algorithms however underestimate the shape and
amplitude of the SWIR bands including MODTRAN. In the next section we show
that this underestimation will lead to poor detection performance. Thus, Target 4 is an
interesting case for further research into ways to improve all atmospheric
compensation techniques.

Overall the ARRT algorithm performs as well as MODTRAN using only the
target reflectance signature, reference signature, and imagery. MODTRAN requires
radiosonde information, vicarious calibration, and GPS information to produce
signatures that are at best only slightly better than ARRT. Considering the amount of
time necessary to collect all this information and process it through MODTRAN,
ARRT provides similar target estimates with significantly less ancillary data and in a
fraction of the time.

3.4.2. Comparison of Target Signatures for Subpixel Detection

While comparing the estimated radiance signatures to their true counterparts is
important, it does not answer whether the estimated targets are a good match for
subpixel target detection applications. This set of experiments was designed to answer
the aforementioned question using the well known Adaptive Cosine Estimate (ACE)
algorithm [58]. This detector is one of the better detectors available for subpixel
detection in HSI data. Another reason for using this detector is the background is
modeled entirely by a multivariate normal distribution; thus, no background
endmembers are required. The algorithm’s performance is based solely on the image

and the target signature. Thus, ACE makes an ideal algorithm to use for experiments
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comparing algorithms that generate target radiance signatures. More information on
the ACE algorithm is documented in Chapter 5.

For all of these experiments, the ACE algorithm was processed in the
following manner. Besides the target signature, a mean and covariance had to be
estimated. There are two ways to estimate these parameters: globally or locally. We
chose the global method for these experiments as this provided both the best
performance and the fastest implementation. Typically, the SAM algorithm is used to
detect obvious target detections and remove them from the image before calculating
the global mean and covariance as was done for Image 7. In Images 1 through 6
however, the targets are so small, they are not detected by the SAM algorithm and
hence were not removed. While this may slightly degrade performance [27], it
provides the most honest performance results as real-world applications will not have
knowledge of the ground truth a-priori.

Once the ACE detector was run, a detection image was generated. As
mentioned in Chapter 2, the ground truth for Sensor X was for object level detection.
To obtain objects from our detection images, a clustering threshold is applied. This
clustering threshold refers to a threshold that combines adjacent pixels together to
form an object which will be classified as either target or clutter. Typically this
threshold is chosen to include no more than 1% to 5% of the pixels in the image
depending on the application. In our analysis, we chose 1% as we knew the number
of targets was far less than 1% of the pixel in any one image. Each cluster is assigned
the maximum detection score from all the pixels that make up the cluster. Along with

the maximum detection score, each cluster is identified as either target or clutter
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based on their location relative to the object-level ground truth. This information can
then be used to identify how well a detector performs.

3.4.2.1. Comparison of Full Pixel Detection Performance

The first experiment applies ACE to Targets 3 and 4 in Image 7 from Sensor
X using the target signatures generated in the previous set of experiments. For this
experiment we use the MODTRAN algorithm and three variants of ARRT: the
standard ARRT algorithm described in the previous sections, the ARRT algorithm
without the upwelled radiance estimate (ARRT w/o L,,), and an adjusted ARRT
algorithm where the amplitude has been matched perfectly to the extracted target
signatures (ARRT Adj). The ARRT variants were added to identify the benefits of
estimating the upwelled radiance term and to test the importance of obtaining a
correct estimate of amplitude.

Figure 16 shows the ACE detector results for the estimated target signatures.
Each figure contains black and gray vertical bars. The black bars show the range of
detection values for the background. The gray bars show the range of detection values
for the targets. Ideally, these bars should not overlap indicating the targets are
completely separable from the background. Above the black bar, a number is posted
identifying how many false alarms occur above the minimum target detection score
(i.e., the number of false alarms that are in or above the range of target detection
scores). Above the gray bar, a number is posted indicating the percentage of target
detected in the image.

Results for Target 3 show all the target estimates are well matched to the
targets in the image. The ARRT estimates achieve the ideal case separating the target

from the background easily. The MODTRAN signature generated 4 false alarms, but
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this was to be expected as it was not as accurate in both shape and amplitude as the
ARRT signatures. Even with 4 false alarms, the performance is only marginally

worse than using the ARRT signatures.
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Figure 16: ACE Results for Image 7
for (a) Target 3 and (b) Target 4

Results for Target 4 are much more interesting. First, Target 4 is a difficult
target to detect because of its low reflectance signature. Not surprisingly, the false
alarm counts are significantly higher with this target than with Target 3. The
MODTRAN signature provides the best performance outperforming the “true”

signature estimated from the mean of the target detections in the image. ARRT

provides good detection performance, but has 68% more false alarms. As expected,
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the ARRT estimate without the upwelled radiance term performs the worst giving an
abysmal 25% P4 providing evidence that the upwelled radiance term is important to
subpixel detection applications. Another interesting result is the last set of bars. These
results were generated using an ARRT signature that was corrected to have the same
amplitude as the target signature taken from the image. The results for this signature
rival the performance achieved with MODTRAN. Thus, amplitude plays a
considerable role in achieving good subpixel detection performance.

On a final note, the true target signature for Target 4 does not perform as well
as most of the target radiance estimates. This is not surprising however given the size
of Target 4 in Image 7. Since targets span only 3.6 pixels, most likely some “target”
pixels were identified that contained some background materials as well. Thus, the
“real” target signature is compromised and this leads to the degraded performance.
Another result from this experiment is that even with multi-pixel targets that contain
few pixels; atmospheric compensation algorithms may provide a better estimate of
the target than can be drawn from the image with known ground truth.

3.4.2.2. Comparison of Subpixel Detection Performance

Image 7 provided us the opportunity to compare target signatures generated
using atmospheric compensation algorithms to their true signatures in an image.
Unfortunately, the analysis could not provide performance estimates for actual
subpixel targets. To provide this type of analysis, we compare the MODTRAN,
ARRT, and ARRT without L,, on Images 1 through 6 from Sensor X. These images
were collected at an altitude of 1220 m so that each pixel imaged approximately

0.1820 m” of area. The result of the higher altitude is that the targets have fill factors
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(percent of the pixel occupied by target material) ranging from at most 60% to as low
as 11%.

As was done in the previous experiment, ACE was applied to the data for the
various target types and target radiance estimates. A clustering threshold of 1% was
used to form the objects that were identified as either target or clutter using the
provided ground truth. Some target did span multiple pixels, but did so with smaller
fill factors (e.g., Target 3 has a 60% fill factor that can be split across two pixels as
20% and 40%).

Instead of bar graphs to analyze performance, receiver operating characteristic
(ROC) curves were used. These ROC curves were generated across all images so
enough targets would be available to make a meaningful ROC curve. As is typical,
the y-axis measures the P4 normalized to 1. The x-axis, however, is a measure of false
alarm density. This metric is the number of false alarms divided by the total area
imaged. Curves for detectors that achieve false alarm densities of 10~ or lower with
50% Pd are considered good performers.

Figure 17,Figure 18, and Figure 19 display the ROC curves for Targets 1
through 3 respectively. In all cases, ARRT performs as well as MODTRAN. This
shows that an in-scene technique can perform as well as a complicated model-based
technique for subpixel detection performance. This result is expected given the good
results seen on Target 3 in the earlier experiments. Additionally, Targets 1 through 3
have moderate to strong reflective signatures as shown in Figure 6. Because the
signatures have good reflectance, the algorithms are less prone to small errors and

provide good radiance estimates in all cases.
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Figure 17: ROC Comparison of Target 1 Signatures

HHHHHHWHHHHHWHHHHHWHHHHHW \\\\\ R J
\\\\\\ T —_ o~ ]
\\\\\\ R e A S g 5|7
\\\\\\ e e e 0 = 1
\\\\\\ T O o = |
| | I I 7]
2 =7 N 58] 7
| | | | T( N—
\\\\\ e e e B
I I I I a e g
| | | | Om m
I I I I
\\HHHHHHHHHHHHHHHHWHHHHH,HHM J
\\\\\ 1o T T oo -r- - - b
e A ]
S _ _ -
I I I |
N [ N
\\\\\ T B
I I I I T
S o _ _ I ___
I | | | I
I I I I I
I I I I I
- ———+----- Fo-—-= Fo--— - —--=-=-= I——=-=-=9
- - - I- - - - -»-_--_--»L-------—--—-—°oZ-—Z——Z-4
\\\\\ i e e
\\\\\ L e e el Bt
\\\\\ e el ol i At
\\\\\ e e e e
S R I IO L ]
i i i I I
| I I I I
: I E T [ [
I I I I I
——— ! ! ! !
e N R R o ]
——F--=-=-= F---=-- —--=== —==-=-=4
[T} ---_T----__C----2CZZ---2”2-2-°Z°7
\\\\\\ JURE v
\\\\\\ iy
| | !
I I
I I
T T T I I
I I I I I
I I I I I
1 1 1 1 1
(=N 0 >~ Nel v <t
R SN S
o e} (e} (e o e}
p

a9

-2

10

10

False Alarm Density (fa/m?)

Figure 18: ROC Comparison of Target 2 Signatures
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Figure 19: ROC Comparison of Target 3 Signatures

Target 4 is the difficult target. As mentioned in the previous section, the target

has a weak reflectance signature making it hard to detect at an altitude of 313m. At

1220m altitudes, the target becomes very difficult to detect. None of the detectors

with any target estimate perform well although MODTRAN performs the best as

expected. Model-based methods are somewhat immune to sensor collection errors

and tend to perform better with low reflectance targets [93]. In-scene methods tend to

degrade with such targets as even small errors can seriously affect the shape and

amplitude of the estimated target signature which leads to degraded detection

performance. Therefore when dealing with weak target signatures, model-based

methods still have an advantage over in-scene methods as has been previously

documented [93]. This statement holds true for ARRT as well.
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Figure 20: ROC Comparison of Target 4 Signatures

3.5. Summa

Characterization of the target radiance signature is a key part of subpixel

detection. Many ways have been developed over the years to estimate the

atmospheric transfer function at the heart of target characterization. This work

presents a new in-scene algorithm ARRT for characterizing target radiance signatures

using only the image and a reference reflectance signature. The algorithm uses

detection theory and radiative transfer theory to project a target reflectance signature

into the radiance seen at the sensor.

The ARRT algorithm provides a number of advantages over other methods.

First, ARRT provides radiance signatures in a fraction of the time of model-based

methods since ancillary information such as weather and source-target-receiver

geometry are not used. Second, ARRT generates signatures that rival model-based
methods. Third, the signatures generated by ARRT have been shown to provide good
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subpixel detection performance over a variety of targets. Finally, sensor calibration
issues which are problematic for model-based methods pose no problem for in-scene
methods such as ARRT. These traits make ARRT very attractive for applications
where a model is simply not feasible and or the ancillary information cannot be
obtained.

While ARRT does have the aforementioned attractive properties, it also has its
limitations. ARRT is meant for aerial imagery as opposed to satellite data or images
taken at extreme oblique angles. Additionally, the imagery must contain pure
background pixels with moderate to high reflectance signature to estimate the
amplitude of the target radiance signature. As expected, ARRT like other in-scene
methods has difficulty estimating signatures with low reflectance. However, even in

this extreme case, model-based methods perform only marginally better.
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Chapter 4: Background Signature Characterization

Target characterization is an important aspect of any detection algorithm. In
subpixel detection, however, characterization of the competing background signatures
within the pixel is just as important. Unlike conventional full-pixel detection where
the pixel contains target or background signatures, subpixel targets are a combination
of the target and the co